120 research outputs found

    An assessment of multibody simulation tools for articulated spacecraft

    Get PDF
    A survey of multibody simulation codes was conducted in the spring of 1988, to obtain an assessment of the state of the art in multibody simulation codes from the users of the codes. This survey covers the most often used articulated multibody simulation codes in the spacecraft and robotics community. There was no attempt to perform a complete survey of all available multibody codes in all disciplines. Furthermore, this is not an exhaustive evaluation of even robotics and spacecraft multibody simulation codes, as the survey was designed to capture feedback on issues most important to the users of simulation codes. We must keep in mind that the information received was limited and the technical background of the respondents varied greatly. Therefore, only the most often cited observations from the questionnaire are reported here. In this survey, it was found that no one code had both many users (reports) and no limitations. The first section is a report on multibody code applications. Following applications is a discussion of execution time, which is the most troublesome issue for flexible multibody codes. The representation of component flexible bodies, which affects both simulation setup time as well as execution time, is presented next. Following component data preparation, two sections address the accessibility or usability of a code, evaluated by considering its user interface design and examining the overall simulation integrated environment. A summary of user efforts at code verification is reported, before a tabular summary of the questionnaire responses. Finally, some conclusions are drawn

    Proceedings of the 3rd Annual Conference on Aerospace Computational Control, volume 1

    Get PDF
    Conference topics included definition of tool requirements, advanced multibody component representation descriptions, model reduction, parallel computation, real time simulation, control design and analysis software, user interface issues, testing and verification, and applications to spacecraft, robotics, and aircraft

    Computational controls for aerospace systems

    Get PDF
    The goal is to develop the next generation guidance and control analysis and design tools to enable future missions and to improve productivity and reliability

    A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular marine predators.

    Get PDF
    Giant viruses are remarkable for their large genomes, often rivaling those of small bacteria, and for having genes thought exclusive to cellular life. Most isolated to date infect nonmarine protists, leaving their strategies and prevalence in marine environments largely unknown. Using eukaryotic single-cell metagenomics in the Pacific, we discovered a Mimiviridae lineage of giant viruses, which infects choanoflagellates, widespread protistan predators related to metazoans. The ChoanoVirus genomes are the largest yet from pelagic ecosystems, with 442 of 862 predicted proteins lacking known homologs. They are enriched in enzymes for modifying organic compounds, including degradation of chitin, an abundant polysaccharide in oceans, and they encode 3 divergent type-1 rhodopsins (VirR) with distinct evolutionary histories from those that capture sunlight in cellular organisms. One (VirRDTS) is similar to the only other putative rhodopsin from a virus (PgV) with a known host (a marine alga). Unlike the algal virus, ChoanoViruses encode the entire pigment biosynthesis pathway and cleavage enzyme for producing the required chromophore, retinal. We demonstrate that the rhodopsin shared by ChoanoViruses and PgV binds retinal and pumps protons. Moreover, our 1.65-Å resolved VirRDTS crystal structure and mutational analyses exposed differences from previously characterized type-1 rhodopsins, all of which come from cellular organisms. Multiple VirR types are present in metagenomes from across surface oceans, where they are correlated with and nearly as abundant as a canonical marker gene from Mimiviridae Our findings indicate that light-dependent energy transfer systems are likely common components of giant viruses of photosynthetic and phagotrophic unicellular marine eukaryotes

    A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular marine predators

    Get PDF
    Significance: Although viruses are well-characterized regulators of eukaryotic algae, little is known about those infecting unicellular predators in oceans. We report the largest marine virus genome yet discovered, found in a wild predatory choanoflagellate sorted away from other Pacific microbes and pursued using integration of cultivation-independent and laboratory methods. The giant virus encodes nearly 900 proteins, many unlike known proteins, others related to cellular metabolism and organic matter degradation, and 3 type-1 rhodopsins. The viral rhodopsin that is most abundant in ocean metagenomes, and also present in an algal virus, pumps protons when illuminated, akin to cellular rhodopsins that generate a proton-motive force. Giant viruses likely provision multiple host species with photoheterotrophic capacities, including predatory unicellular relatives of animals. Abstract: Giant viruses are remarkable for their large genomes, often rivaling those of small bacteria, and for having genes thought exclusive to cellular life. Most isolated to date infect nonmarine protists, leaving their strategies and prevalence in marine environments largely unknown. Using eukaryotic single-cell metagenomics in the Pacific, we discovered a Mimiviridae lineage of giant viruses, which infects choanoflagellates, widespread protistan predators related to metazoans. The ChoanoVirus genomes are the largest yet from pelagic ecosystems, with 442 of 862 predicted proteins lacking known homologs. They are enriched in enzymes for modifying organic compounds, including degradation of chitin, an abundant polysaccharide in oceans, and they encode 3 divergent type-1 rhodopsins (VirR) with distinct evolutionary histories from those that capture sunlight in cellular organisms. One (VirRDTS) is similar to the only other putative rhodopsin from a virus (PgV) with a known host (a marine alga). Unlike the algal virus, ChoanoViruses encode the entire pigment biosynthesis pathway and cleavage enzyme for producing the required chromophore, retinal. We demonstrate that the rhodopsin shared by ChoanoViruses and PgV binds retinal and pumps protons. Moreover, our 1.65-Å resolved VirRDTS crystal structure and mutational analyses exposed differences from previously characterized type-1 rhodopsins, all of which come from cellular organisms. Multiple VirR types are present in metagenomes from across surface oceans, where they are correlated with and nearly as abundant as a canonical marker gene from Mimiviridae. Our findings indicate that light-dependent energy transfer systems are likely common components of giant viruses of photosynthetic and phagotrophic unicellular marine eukaryotes

    Multiple energy sources and metabolic strategies sustain microbial diversity in Antarctic desert soils

    Get PDF
    Numerous diverse microorganisms reside in the cold desert soils of continental Antarctica, though we lack a holistic understanding of the metabolic processes that sustain them. Here, we profile the composition, capabilities, and activities of the microbial communities in 16 physicochemically diverse mountainous and glacial soils. We assembled 451 metagenome-assembled genomes from 18 microbial phyla and inferred through Bayesian divergence analysis that the dominant lineages present are likely native to Antarctica. In support of earlier findings, metagenomic analysis revealed that the most abundant and prevalent microorganisms are metabolically versatile aerobes that use atmospheric hydrogen to support aerobic respiration and sometimes carbon fixation. Surprisingly, however, hydrogen oxidation in this region was catalyzed primarily by a phylogenetically and structurally distinct enzyme, the group 1l [NiFe]-hydrogenase, encoded by nine bacterial phyla. Through gas chromatography, we provide evidence that both Antarctic soil communities and an axenic Bacteroidota isolate (Hymenobacter roseosalivarius) oxidize atmospheric hydrogen using this enzyme. Based on ex situ rates at environmentally representative temperatures, hydrogen oxidation is theoretically sufficient for soil communities to meet energy requirements and, through metabolic water production, sustain hydration. Diverse carbon monoxide oxidizers and abundant methanotrophs were also active in the soils. We also recovered genomes of microorganisms capable of oxidizing edaphic inorganic nitrogen, sulfur, and iron compounds and harvesting solar energy via microbial rhodopsins and conventional photosystems. Obligately symbiotic bacteria, including Patescibacteria, Chlamydiae, and predatory Bdellovibrionota, were also present. We conclude that microbial diversity in Antarctic soils reflects the coexistence of metabolically flexible mixotrophs with metabolically constrained specialists.DATA AVAILABILTY: All amplicon sequencing data, raw metagenomes, metagenomic assemblies, and metagenome-assembled genomes were deposited to the National Center for Biotechnology Information (NCBI) Sequence Read Archive under the BioProject accession no. PRJNA630822. All other study data are included in the article and/or supporting information.An Australian Research Council Discovery Early Career Researcher Award (ARC DECRA) Fellowship, an Australian Antarctic Division grant, a South African National Antarctic Program grant, a National Health & Medical Research Council Emerging Leadership 2 (NHMRC EL2) Fellowship, an Australian Government Research Training Stipend Scholarship, a Monash International Tuition Scholarship, a Monash Postgraduate Publications Award, a South African National Antarctic Programme (SANAP) postdoctoral grant.https://www.pnas.orghj2022BiochemistryGeneticsMicrobiology and Plant Patholog

    Mode shifting in school travel mode: examining the prevalence and correlates of active school transport in Ontario, Canada

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies examining the correlates of school transport commonly fail to make the distinction between morning and afternoon school trips. The purpose of this study was to examine the prevalence and correlates of mode shift from passive in the morning to active in the afternoon among elementary and secondary school students in Ontario, Canada.</p> <p>Methods</p> <p>Data were derived from the 2009 cycle of the Ontario Student Drug Use and Health Survey (OSDUHS). 3,633 students in grades 7 through 12 completed self-administered questionnaires. Socio-demographic, behavioural, psychological, and environmental predictors of active school transport (AST) were assessed using logistic regression.</p> <p>Results</p> <p>Overall, 47% and 38% of elementary school students reported AST to and from school, respectively. The corresponding figures were 23% and 32% for secondary school students. The prevalence of AST varied temporarily and spatially. There was a higher prevalence of walking/biking found for elementary school students than for secondary school students, and there was an approximate 10% increase in AST in the afternoon. Different correlates of active school transport were also found across elementary and secondary school students. For all ages, students living in urban areas, with a shorter travel time between home and school, and having some input to the decision making process, were more likely to walk to and from school.</p> <p>Conclusions</p> <p>Future research examining AST should continue to make the analytic distinction between the morning and afternoon trip, and control for the moderating effect of age and geography in predicting mode choice. In terms of practice, these variations highlight the need for school-specific travel plans rather than 'one size fits all' interventions in promoting active school transport.</p

    The Chikungunya Epidemic on La Réunion Island in 2005–2006: A Cost-of-Illness Study

    Get PDF
    For a long time, studies of chikungunya virus infection have been neglected, but since its resurgence in the south-western Indian Ocean and on La Réunion Island, this disease has been paid greater amounts of attention. The economic and social impacts of chikungunya epidemics are poorly documented, including in developed countries. This study estimated the cost-of-illness associated with the 2005–2006 chikungunya epidemics on La Réunion Island, a French overseas department with an economy and health care system of a developed country. “Cost-of-illness” studies measure the amount that would have been saved in the absence of a disease. We found that the epidemic incurred substantial medical expenses estimated at €43.9 million, of which 60% were attributable to direct medical costs related, in particular, to expenditure on medical consultations (47%), hospitalization (32%) and drugs (19%). The costs related to care in ambulatory and hospitalized cases were €90 and €2000 per case, respectively. This study provides the basic inputs for conducting cost-effectiveness and cost-benefit evaluations of chikungunya prevention strategies

    Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies

    Get PDF
    Objectives: The purpose of this document is to make the output of the International Working Group for Intravascular Optical Coherence Tomography (IWG-IVOCT) Standardization and Validation available to medical and scientific communities, through a peer-reviewed publication, in the interest of improving the diagnosis and treatment of patients with atherosclerosis, including coronary artery disease. Background: Intravascular optical coherence tomography (IVOCT) is a catheter-based modality that acquires images at a resolution of ∼10 μm, enabling visualization of blood vessel wall microstructure in vivo at an unprecedented level of detail. IVOCT devices are now commercially available worldwide, there is an active user base, and the interest in using this technology is growing. Incorporation of IVOCT in research and daily clinical practice can be facilitated by the development of uniform terminology and consensus-based standards on use of the technology, interpretation of the images, and reporting of IVOCT results. Methods: The IWG-IVOCT, comprising more than 260 academic and industry members from Asia, Europe, and the United States, formed in 2008 and convened on the topic of IVOCT standardization through a series of 9 national and international meetings. Results: Knowledge and recommendations from this group on key areas within the IVOCT field were assembled to generate this consensus document, authored by the Writing Committee, composed of academicians who have participated in meetings and/or writing of the text. Conclusions: This document may be broadly used as a standard reference regarding the current state of the IVOCT imaging modality, intended for researchers and clinicians who use IVOCT and analyze IVOCT data
    corecore